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The ecological function of fruit colour has been the focus of many studies.

The most commonly tested hypothesis is that fruit colour has evolved to facili-

tate detection by seed-dispersing animals. We tested whether distributions of

fruit colours are consistent with the hypothesis that colour is an evolved signal

to seed dispersers using a comparative community approach. We compared

the contrast between ripe fruits and leaf backgrounds at two sites, one in

Madagascar where seed dispersers are primarily night-active, red–green

colour-blind lemurs, and the other in Uganda, where most vertebrate seed

dispersers are day-active primates and birds with greater capacity for colour

vision. We show that fruits in Uganda have higher contrast against leaf

background in the red–green and luminance channels whereas fruits in

Madagascar contrast more in the yellow–blue channel. These results indicate

that fruit colour has evolved to contrast against background leaves in response

to the visual capabilities of local seed disperser communities.
1. Introduction
The degree to which fruit traits result from selection by animal mutualists is a

long-debated question [1–4]. Among the myriad fruit traits, colour has received

the most attention, perhaps because of its diversity and conspicuousness to

human observers. Fruit colour has been hypothesized to increase fruit con-

spicuousness to seed dispersers by resulting in a visual contrast against

backgrounds, primarily mature leaves [5–7]. The debate regarding the adaptive

significance of fruit colour is far from being settled [3]. Some studies have found

that colour is not likely to be under selection by seed dispersing animals [1,8,9].

Others found that when other relevant factors are controlled for, there is evidence

that frugivores have driven the evolution of fruit colour, and that colour may be

subject to weaker constraints than other fruit traits [2,3,10,11].

Discrepancies between studies are the result of several factors. Some rely on

subjective colour categories recorded by human observers [1,9] despite the fact

that the human colour-vision phenotype is rare and shared with only Old-

World monkeys and apes [12]. Additionally, some studies consider fruit

colour in isolation [9], even though the locus of selection is not colour per se,
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Figure 1. Phylogeny of study species. Red—Kibale National Park, Uganda (KNP). Yellow—Ranomafana National Park, Madagascar (RNP). Phylogeny is from Zanne
et al. [13]. Representatives of the same families and genera are present in both sites.
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but rather the visual contrast between fruit and its back-

ground [7]. Finally, many studies compare fruits dispersed

exclusively by a single group of animals [2], which precludes

identifying variation in fruit colour resulting from selection

pressures exerted by multiple different frugivores [3]. While

some community-level studies have been conducted, they

compared communities in which the differences in frugivore

visual capacities are not fully known, or not sufficiently

diverse to generate differences in fruit coloration [8,9].

Here, we employ a comparative approach to test the

hypothesis that fruit colour has evolved in response to seed

disperser visual phenotypes. We compare fleshy fruits from

two plant communities: Kibale National Park (KNP),

Uganda, and Ranomafana National Park (RNP), Madagascar.

Both sites are well studied, representative, and relatively

undisturbed montane rainforests in similar elevations, which

host plant taxa from the same genera and families (figure 1)

but very different frugivore communities (electronic sup-

plementary material, table S1). KNP supports a frugivore

community of primarily diurnal, trichromatic primates and

tetrachromatic birds that can readily discriminate between

reds and greens [14]. In contrast, RNP is dominated by
mainly nocturnal or cathemeral lemurs [15,16], many of

which cannot distinguish reds and greens, and all of which

can distinguish contrasts on the yellow–blue channel. As a

result, most KNP species are dispersed by uniformly trichro-

matic primates and tetrachromatic birds, while most RNP

species are either exclusively or partially dispersed by dichro-

matic or polymorphic lemurs (electronic supplementary

material, table S1). Thus, we predicted that if fruit colour is

selected to maximize conspicuousness to frugivores, ripe

fruit–leaf contrasts would be higher in KNP, except in the

yellow–blue colour channel that is accessible to most RNP fru-

givores. We calculated chromatic and achromatic contrast

between fruits and background leaves in 72 species from the

two sites, and used phylogenetically controlled models to

compare visual conspicuousness of fruits against background

leaves in three channels: red–green (visible to trichromatic

and tetrachromatic observers), yellow–blue, and luminance.
2. Material and methods
Ripe fruits and mature leaves of 44 plant species (figure 1; elec-

tronic supplementary material, table S1) from KNP were
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Figure 2. Contrasts between ripe fruits and mature leaves. KNP—Kibale
National Park (Uganda). RNP—Ranomafana National Park (Madagascar).
Contrast on each channel was calculated based on the visual model of repre-
sentative trichromatic local primates. Contrasts in all tests were square-root
transformed to meet the assumptions of the statistical tests used. N ¼ 72
species in all analyses. Asterisks denote significance at a , 0.05 (*),
a , 0.01 (**) and a , 0.001 (***) in a PGLS model using a phylogeny
by Zanne et al. [13].
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collected between May 2015 and Dec 2016. We focused on fleshy

fruits that are dispersed by local birds and mammals, primarily

primates, though two species from KNP are also dispersed by

elephants. Samples of 28 plant species from RNP (figure 1; elec-

tronic supplementary material, table S1) were collected between

Oct 2016 and Sep 2017. Fruits were considered ripe when they

changed their colour and were known to be consumed by local

frugivores. One to twenty fruits (mean 5.2 per individual) and

leaves from 1 to 10 individuals (mean 1.92 per species) per

species were collected and immediately brought to the field lab-

oratory for processing. KNP fruit and leaf colour was quantified

using a Jaz portable spectrometer and a PX-2 pulsed xenon lamp

(Ocean Optics Inc.) emitting a D-65 light source, with optical

probes fixed at a 45 degree angle. RNP samples were analysed

using the same reflectance standard, light source and sampling

parameters, with a USB2000þUV-VIS miniature fibre optics

spectrometer (Ocean Optics). Measurement parameters were

identical in the two study sites. For each species, we calculated

the mean reflectance in each 0.42 nm bin across all samples

and individuals.

For each plant species, we calculated chromatic and achro-

matic contrast between fruits and background leaves under a

diurnal, forest shade illuminant in three visual channels:

red–green, yellow–blue, and luminance, following Hiramatsu

et al. [17]. To allow direct comparison, we simulated a representa-

tive trichromatic phenotype based on S cones, M cones and

L cones, with peak spectral sensitivities (lmax) of 425, 535 and

562 nm, respectively. These peak sensitivities roughly correspond

to the typical catarrhine phenotype, as well as many strepsirrhines

[18]. All diurnal birds would also be able to perceive the three

colour channels reported here [19]. Dichromatic phenotypes,

which are common in Madagascar [15], would be able to perceive

the yellow–blue and luminance contrasts, but not red-green con-

trasts. We compared visual contrasts between fruits and leaves

in all three channels using phylogenetic generalized least square

analyses (PGLS) and a phylogeny by Zanne et al. [13]. We used

three models, in which contrast (red-green, yellow-blue, or lumi-

nance) was the response variable and study site (KNP, RNP)

was a single predictor variable. All continuous variables were

square-root transformed to comply with the statistical test’s

assumptions. All analyses were conducted in R v. 3.4.3 [20]

using packages APE [21], Phytools [22] and nlme [23].
3. Results
PGLS models revealed that fruits in KNP have a significantly

higher contrast against mature leaves in the red–green

(PGLS; d.f. ¼ 72, 70; t ¼ 29.79, p , 0.001) and luminance

(PGLS; d.f. ¼ 72, 70; t¼ 22.83, p , 0.01) channels (figure 2)

than fruits in RNP. In contrast, in the yellow–blue channel,

fruits in RNP contrast against background leaves significantly

more than in KNP (PGLS; d.f. ¼ 72, 70; t ¼ 2.16, p , 0.05)

(figure 2).
4. Discussion
Based on the trichromatic visual models we used, fruits in

KNP are significantly more visually conspicuous to local

frugivores (primates and birds) than fruits in RNP in the

red–green and luminance channels. This is especially notice-

able in the former, where the median contrast in RNP scored

lower than the lowest-contrasting fruit in KNP (figure 2). In

contrast, RNP fruits are more visually conspicuous in the

yellow–blue channel, although the difference between the

sites is smaller than the differences in the other channels.

These patterns of fruit coloration correspond to differences
in the typical colour-vision phenotype of their respective

frugivore communities. In Madagascar, most lemurs are

dichromats (red–green colour blind) and visual conspicuous-

ness can only be achieved through contrast in the yellow–blue

and luminance channels. In contrast, trichromatic primates

and tetrachromatic birds in KNP can readily distinguish reds

and greens, and it has recently been shown that red–green dis-

crimination leads to higher fruit intake rates in trichromatic

primates [24]. The phylogenetic similarities in plant commu-

nities, i.e. that closely related species are found at the

different geographical sites (figure 1), imply that between-

site differences cannot be attributed to common ancestry.

Thus, these results strongly support the hypothesis that fruit

colour is shaped by the visual phenotypes of seed disperser

communities [2,10,25].

While the differences in the red–green and yellow–blue

channels were expected, the higher achromatic contrast

(luminance) in KNP requires further explanation, because

luminance can be useful for fruit detection by dichromats

and trichromats [26]. A reasonable explanation is that while

RNP frugivores may use fruit colour as a foraging and food

selection cue, they also tend to rely more strongly on olfactory

cues [27]. Thus, Malagasy fruits may be under weaker selec-

tion pressures to offer visually-conspicuous fruits. Moreover,

the frugivore community of KNP is more diverse and

includes many different primates and birds, whose colour

discrimination capacities and foraging strategies may vary.

For example, fruit-foraging birds rely on chromatic and

achromatic (luminance) cues in different situations [28].

Thus, the higher contrast in luminance, along with high

red-green contrast and non-negligible contrast in the

yellow-blue channel, may reflect high overall colour con-

spicuousness as an adaptation to dispersal by a diverse

community of visually oriented frugivores. If so, these results

highlight the importance of considering the role of multiple
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frugivores in shaping fruit characteristics. While past studies

have compared primate and bird-dispersed fruits [2], our

results suggest that the joint effect of frugivores with red–

green colour discrimination capacity (trichromatic primates

and primarily tetrachromatic birds) can yield patterns that

become clear once compared with communities in which

these colour-vision phenotypes are less common. Acknowl-

edging that these conclusions are based on a comparison of

two sites, we encourage future studies to test the hypothesis

using other sites in Madagascar, mainland Africa, and other

localities.

In conclusion, using a comparative community approach,

our results support the hypothesis that fruit colour is under

selection exerted by colour-vision phenotypes of seed disper-

sers. These results are in accordance with several previous

studies [2,10], and disagree with the conclusions of a more

recent work [9]. An overarching pattern—that more visually

conspicuous fruits are found in areas with visually oriented

frugivores—emerges when quantifying and modelling colour,
focusing on the locus of selection, and comparing communities

that are sufficiently diverse in their frugivore communities to

generate community-wide differences in fruit phenotypes.

Data accessibility. Electronic supplementary material, table S1 contains
all raw data used in the manuscript.

Authors’ contributions. O.N. acquired funding, collected data, designed the
study, analysed data and wrote the manuscript. K.V. collected data,
designed the study and wrote the manuscript. D.R. collected
data. A.D.M. analysed data and wrote the manuscript. M.A. acquired
funding, designed the study and helped writing the manuscript.
C.A.C. acquired funding, designed the study and helped writing the
manuscript. All authors have seen and approved the final version of
this manuscript.

Competing interests. We declare no competing interests.

Funding. O.N. was funded by a German Science Foundation grant (NE
2156/1-1) while working on this manuscript. C.A.C. was supported
by NSERC Canada and the CRC program.

Acknowledgements. We thank Patricia Wright, the Wenner Gren Foun-
dation and Centre ValBio for providing the instrument used for
data collection in RNP.
References
1. Fischer KE, Chapman CA. 1993 Frugivores and fruit
syndromes: differences in patterns at the genus and
species level. Oikos 66, 472 – 482. (doi:10.2307/
3544942)
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